Home/Models/Zhipu AI/GLM 5
Z

GLM 5

Indtast:$0.672/M
Output:$2.688/M
<think>**Considering user request** I need to respond to the user about their statement on GLM-5. They didn’t ask a specific question, which makes me wonder if they want a rewrite, summary, or feedback on it. Since it’s just a single paragraph, I might suggest options like summarizing, marketing copy, or proofreading. I’ll provide numbered choices for clarity. Also, I should be careful about any claims made while providing suggestions to refine the copy.**Revising user content** I think it’s a good idea to provide a tightened version with alternative tones like concise, technical, product-focused, and SEO-friendly. I’ll suggest 2-3 variations without heavy formatting and minimal bullet points. I'll offer options such as a punchy version, a README version, or key bullets. I’ll also keep in mind to avoid repetition and emphasize unique features, while suggesting placeholders for metrics. I want to encourage the user to fill in those metrics carefully and ask for their preferred style!**Creating editing options** I see that the editing constraints allow ASCII only—got it! I think it could be useful to suggest comparisons to models like Llama 3.1, CodeLlama, DeepSeek Coder V2, and GPT-4o, but I’ll be cautious about it. Instead, I’ll focus on creating a tagline and bullet list for features. I’ll draft three variations: 1) a punchy version, 2) a technical tone, and 3) a product website tagline with bullets. I'll keep the formatting minimal and concise!**Formulating suggestions** I think to strengthen the content, I should quantify performance, highlight agentic features, and mention licensing, system requirements, SDKs, security, and inference. It’s also important to ask the user which variant they prefer and provide appropriate metrics, benchmarks, and target audience details. The guidelines say headers are optional, and I’ll keep formatting minimal with bullet points. I want to ensure accuracy, avoiding any claims beyond the user’s text, so I'll develop three variants with concise suggestions while possibly including a README snippet for a "pip install" command, but I’ll refrain from details I’m unsure about. Let's get started!</think> Want this tightened or tailored? Here are a few punchier variants plus quick suggestions. **Concise** GLM-5 is Z.ai’s open-source foundation model for complex systems design and long-horizon agents. Built for expert developers, it delivers production-grade performance on large-scale programming, with agentic planning, deep backend reasoning, and iterative self-correction for full‑system construction and autonomous execution. **Technical** GLM-5 is Z.ai’s open-source foundation model optimized for complex systems design and long-horizon agent workflows. It combines advanced planning, tool-use orchestration, and iterative self-correction to move beyond code generation into full-system construction and autonomous execution. Designed for expert developers, it targets production-grade performance on large-scale programming tasks and rivals leading closed-source models. **Website/README** Build full systems, not just code. GLM-5 is Z.ai’s open-source model for long‑horizon, production agent workflows. - Advanced agentic planning and tool orchestration - Deep backend reasoning across large codebases - Iterative self-correction loops for reliability - Production-grade performance on large programming tasks Suggestions to strengthen - Quantify claims: add benchmarks (e.g., SWE-bench, HumanEval+, long-horizon tasks), hardware/time. - Clarify licensing and usage scope (commercial? model sizes?). - Name concrete agent features (planner, executor, tool API, memory, eval harness). - Add a clear call to action (links to weights, docs, quickstart). - If “rivals closed-source models,” cite specific head-to-head metrics. Want me to adapt this for a README hero, a press note, or docs intro? If you have benchmarks, license, and model sizes, I can fold them in.
Ny
Kommersiel brug
Playground
Oversigt
Funktioner
Priser
API

Tekniske specifikationer for GLM-5

PunktGLM-5 (rapporteret)
ModelfamilieGLM (Z.ai / Zhipu AI) — flagskibsgeneration
ArkitekturMixture-of-Experts (MoE) + sparsom opmærksomhed (DeepSeek/DSA-optimeringer).
Samlet antal parametre≈744–745B (MoE-pulje).
Aktive/dirigerede parametre (pr. token)~40–44B aktive (afhænger af routing/eksperter).
Prætrænings-tokens~28.5T tokens (rapporteret).
Kontekstvindue (input)Op til 200,000 tokens (lang-kontekst-tilstand).
Maksimalt antal output-tokens128,000 tokens (maksimal generering pr. kald, rapporteret).
InputmodaliteterKun tekst (primært); designet til rich text → outputs (doc/xlsx-generering via værktøjer).

Hvad er GLM-5

GLM-5 er Zhipu AI’s næste generations grundmodel, der skalerer GLM-linjen med et MoE-routeringsdesign og optimeringer i sparsom opmærksomhed for at levere langkontekstuel ræsonnement og agentiske arbejdsgange (multitrins planlægning, kode- og systemorkestrering). Den er eksplicit positioneret som en open-weights udfordrer til agentiske og ingeniøropgaver, med virksomhedsadgang via API'er og selvhosting.

🚀 Hovedfunktioner i GLM-5

1. Agentisk intelligens og ræsonnement

GLM-5 er optimeret til arbejdsgange, hvor modellen nedbryder lange, komplekse opgaver i ordnede trin med reduceret hallucination — en markant forbedring i forhold til tidligere GLM-versioner. Den fører visse open-weights model benchmarks på videnspålidelighed og opgaveproduktivitet.

2. Understøttelse af lang kontekst

Med et 200K token kontekstvindue kan GLM-5 fastholde meget lange samtaler, store dokumenter og udvidede ræsonnementskæder uden at miste sammenhæng — en stadig vigtigere kapabilitet til professionelle anvendelser i den virkelige verden.

3. DeepSeek Sparse Attention

Ved at integrere en mekanisme for sparsom opmærksomhed skalerer GLM-5 effektivt sit hukommelsesaftryk, hvilket muliggør længere sekvenser uden lineære omkostningsstigninger.

4. Værktøjsintegration og outputformater

Indbygget understøttelse af strukturerede outputs og integrationer med eksterne værktøjer (JSON, API-kald, dynamisk værktøjsbrug) gør GLM-5 praktisk til virksomhedsapplikationer som regneark, rapporter og automatiserede kodeassistenter.

5. Omkostningseffektivitet

GLM-5 er positioneret som omkostningskonkurrencedygtig sammenlignet med proprietære modparter, med input/output-priser, der er væsentligt lavere end større tilbud, hvilket gør den attraktiv til implementering i stor skala.

Benchmark-ydelse for GLM-5

Flere uafhængige evalueringer og tidlige branchebenchmarks viser, at GLM-5 præsterer stærkt blandt open-weights-modeller:

  • Den opnåede rekordlave hallucinationsrater på Artificial Analysis Intelligence Index — et mål for pålidelighed og sandhed — og overgik tidligere modeller med stor margin.
  • Agentcentrerede benchmarks indikerer betydelige gevinster i udførelsen af komplekse opgaver sammenlignet med GLM-4.7 og andre åbne modeller.
  • Forholdet mellem omkostning og ydeevne placerer GLM-5 i 4. kvartil for hastighed, men øverste niveau (bedst) for intelligens og pris blandt open-weights-modeller.

Kvantitative resultater (eksempel fra rangeringsplatform):

  • Intelligence Index: nr. 1 blandt open-weights-modeller.
  • Priseffektivitet: Høje vurderinger for lave input/output-omkostninger.

Sådan får du adgang til og bruger GLM-5-API'et

Trin 1: Tilmeld dig for at få en API-nøgle

Log ind på cometapi.com. Hvis du endnu ikke er bruger, skal du registrere dig først. Log ind i din CometAPI console. Hent API-nøglen til adgangsgodkendelse for interfacet. Klik på “Add Token” ved API-token i personcenteret, hent token-nøglen: sk-xxxxx og indsend.

Trin 2: Send forespørgsler til glm-5 API'et

Vælg “glm-5”-endepunktet for at sende API-forespørgslen og angiv request body. Forespørgselsmetode og request body fås fra vores websites API-dokumentation. Vores website tilbyder også Apifox-test for nemheds skyld. Erstat <YOUR_API_KEY> med din faktiske CometAPI-nøgle fra din konto. Hvor det kaldes: Chat-format.

Indsæt dit spørgsmål eller din anmodning i content-feltet — det er dette, modellen vil svare på. Behandl API-svaret for at få det genererede svar.

Trin 3: Hent og verificer resultater

Behandl API-svaret for at få det genererede svar. Efter behandlingen svarer API'et med opgavens status og outputdata.

FAQ

What distinguishes GLM-5’s architecture from earlier GLM models?

GLM-5 uses a Mixture of Experts (MoE) architecture with ~745B total parameters and 8 active experts per token (~44B active), enabling efficient large-scale reasoning and agentic workflows compared to previous GLM series.

How long of a context window does GLM-5 support via its API?

GLM-5 supports a 200K token context window with up to 128K output tokens, making it suitable for extended reasoning and document tasks.

Can GLM-5 handle complex agentic and engineering tasks?

Yes — GLM-5 is explicitly optimized for long-horizon agent tasks and complex systems engineering workflows, with deep reasoning and planning capabilities beyond standard chat models.

Does GLM-5 support tool calling and structured output?

Yes — GLM-5 supports function calling, structured JSON outputs, context caching, and real-time streaming to integrate with external tools and systems.

How does GLM-5 compare to proprietary models like GPT and Claude?

GLM-5 is competitive with top proprietary models in benchmarks, performing close to Claude Opus 4.5 and offering significantly lower per-token costs and open-weight availability, though closed-source models may still lead in some fine-grained benchmarks.

Is GLM-5 open source and what license does it use?

Yes — GLM-5 is released under a permissive MIT license, enabling open-weight access and community development.

What are typical use cases where GLM-5 excels?

GLM-5 is well suited for long-sequence reasoning, agentic automation, coding assistance, creative writing at scale, and backend system design tasks that demand coherent multi-step outputs.

What are known limitations of GLM-5?

While powerful, GLM-5 is primarily text-only (no native multimodal support) and may be slower or more resource-intensive than smaller models, especially for shorter tasks.

Funktioner til GLM 5

Udforsk de vigtigste funktioner i GLM 5, designet til at forbedre ydeevne og brugervenlighed. Opdag hvordan disse muligheder kan gavne dine projekter og forbedre brugeroplevelsen.

Priser for GLM 5

Udforsk konkurrencedygtige priser for GLM 5, designet til at passe til forskellige budgetter og brugsbehov. Vores fleksible planer sikrer, at du kun betaler for det, du bruger, hvilket gør det nemt at skalere, efterhånden som dine krav vokser. Opdag hvordan GLM 5 kan forbedre dine projekter, mens omkostningerne holdes håndterbare.
Comet-pris (USD / M Tokens)Officiel Pris (USD / M Tokens)ModelDetail.discount
Indtast:$0.672/M
Output:$2.688/M
Indtast:$0.84/M
Output:$3.36/M
-20%

Eksempelkode og API til GLM 5

Få adgang til omfattende eksempelkode og API-ressourcer for GLM 5 for at strømline din integrationsproces. Vores detaljerede dokumentation giver trin-for-trin vejledning, der hjælper dig med at udnytte det fulde potentiale af GLM 5 i dine projekter.
Python
JavaScript
Curl
from openai import OpenAI
import os

# Get your CometAPI key from https://api.cometapi.com/console/token
COMETAPI_KEY = os.environ.get("COMETAPI_KEY") or "<YOUR_COMETAPI_KEY>"
BASE_URL = "https://api.cometapi.com/v1"

client = OpenAI(base_url=BASE_URL, api_key=COMETAPI_KEY)

# glm-5: Zhipu GLM-5 model via chat/completions
completion = client.chat.completions.create(
    model="glm-5",
    messages=[{"role": "user", "content": "Hello! Tell me a short joke."}],
)

print(completion.choices[0].message.content)

Flere modeller