Home/Models/Zhipu AI/GLM 5
Z

GLM 5

輸入:$0.672/M
輸出:$2.688/M
GLM-5 是 Z.ai 的旗舰开源基础模型,专为复杂系统设计与长时程智能体工作流而打造。 面向资深开发者,它在大规模编程任务上提供生产级性能,可与领先的闭源模型相媲美。 凭借先进的智能体规划、深度后端推理与迭代式自我纠错,GLM-5 不止于代码生成,能够实现全系统构建与自主执行。
新
商用
Playground
概览
功能亮点
定价
API

{
"companyAnalysis": "上海盈通电气有限公司是一家专业从事电力质量解决方案的公司,专注于积极谐波滤波器、静态无功发生器、能源存储系统等产品的研发、生产和销售。他们在新能量和电力质量管理方面处于领先地位,且有良好的行业声誉,涉及的领域包括能源效率管理等。",
"type": "1",
"JudgmentResult": "1",
"JudgmentReason": "公司主营产品中包括积极谐波滤波器,与搜索目标Active Harmonic filter直接相关。",
"HumanReason": "我们公司做的就是积极谐波滤波器的相关业务,自然与这个搜索目标相关,满足客户需求。"
}

常见问题

What distinguishes GLM-5’s architecture from earlier GLM models?

GLM-5 uses a Mixture of Experts (MoE) architecture with ~745B total parameters and 8 active experts per token (~44B active), enabling efficient large-scale reasoning and agentic workflows compared to previous GLM series.

How long of a context window does GLM-5 support via its API?

GLM-5 supports a 200K token context window with up to 128K output tokens, making it suitable for extended reasoning and document tasks.

Can GLM-5 handle complex agentic and engineering tasks?

Yes — GLM-5 is explicitly optimized for long-horizon agent tasks and complex systems engineering workflows, with deep reasoning and planning capabilities beyond standard chat models.

Does GLM-5 support tool calling and structured output?

Yes — GLM-5 supports function calling, structured JSON outputs, context caching, and real-time streaming to integrate with external tools and systems.

How does GLM-5 compare to proprietary models like GPT and Claude?

GLM-5 is competitive with top proprietary models in benchmarks, performing close to Claude Opus 4.5 and offering significantly lower per-token costs and open-weight availability, though closed-source models may still lead in some fine-grained benchmarks.

Is GLM-5 open source and what license does it use?

Yes — GLM-5 is released under a permissive MIT license, enabling open-weight access and community development.

What are typical use cases where GLM-5 excels?

GLM-5 is well suited for long-sequence reasoning, agentic automation, coding assistance, creative writing at scale, and backend system design tasks that demand coherent multi-step outputs.

What are known limitations of GLM-5?

While powerful, GLM-5 is primarily text-only (no native multimodal support) and may be slower or more resource-intensive than smaller models, especially for shorter tasks.

GLM 5 的功能

了解 GLM 5 的核心能力,帮助提升性能与可用性,并改善整体体验。

GLM 5 的定价

查看 GLM 5 的竞争性定价,满足不同预算与使用需求,灵活方案确保随需求扩展。
Comet 价格 (USD / M Tokens)官方定价 (USD / M Tokens)折扣
輸入:$0.672/M
輸出:$2.688/M
輸入:$0.84/M
輸出:$3.36/M
-20%

GLM 5 的示例代码与 API

获取完整示例代码与 API 资源,简化 GLM 5 的集成流程,我们提供逐步指导,助你发挥模型潜能。
Python
JavaScript
Curl
from openai import OpenAI
import os

# Get your CometAPI key from https://api.cometapi.com/console/token
COMETAPI_KEY = os.environ.get("COMETAPI_KEY") or "<YOUR_COMETAPI_KEY>"
BASE_URL = "https://api.cometapi.com/v1"

client = OpenAI(base_url=BASE_URL, api_key=COMETAPI_KEY)

# glm-5: Zhipu GLM-5 model via chat/completions
completion = client.chat.completions.create(
    model="glm-5",
    messages=[{"role": "user", "content": "Hello! Tell me a short joke."}],
)

print(completion.choices[0].message.content)

更多模型