Home/Models/DeepSeek/DeepSeek-V3.1
D

DeepSeek-V3.1

Eingabe:$0.44/M
Ausgabe:$1.32/M
DeepSeek V3.1 ist das Upgrade in DeepSeeks V-Serie: ein hybrides, „denkendes/nicht denkendes“ Großsprachmodell, ausgerichtet auf hohen Durchsatz, kostengünstige allgemeine Intelligenz und agentenbasierte Werkzeugnutzung. Es bewahrt die API-Kompatibilität im OpenAI-Stil, ermöglicht intelligentere Tool-Aufrufe und – laut dem Unternehmen – liefert schnellere Generierung sowie eine verbesserte Agenten-Zuverlässigkeit.
Neu
Kommerzielle Nutzung
Überblick
Funktionen
Preisgestaltung
API
Versionen

Basic features (what it offers)

  • Dual inference modes: deepseek-chat (non-thinking / faster) and deepseek-reasoner (thinking / stronger chain-of-thought/agent skills). The UI exposes a “DeepThink” toggle for end users.
  • Long context: official materials and community reports emphasize a 128k token context window for the V3 family lineage. This enables end-to-end processing of very long documents.
  • Improved tool/agent handling: post-training optimization targeted at reliable tool calling, multi-step agent workflows, and plugin/tool integrations.

Technical details (architecture, training, and implementation)

Training corpus & long-context engineering. The Deepseek V3.1 update emphasizes a two-phase long-context extension on top of earlier V3 checkpoints: public notes indicate major additional tokens devoted to 32k and 128k extension phases (DeepSeek reports hundreds of billions of tokens used in the extension steps). The release also updated the tokenizer configuration to support the larger context regimes.

Model size and micro-scaling for inference. Public and community reports give somewhat different parameter tallies (a result common to new releases): third-party indexers and mirrors list ~671B parameters (37B active) in some runtime descriptions, while other community summaries report ~685B as the hybrid reasoning architecture’s nominal size.

Inference modes & engineering tradeoffs. Deepseek V3.1 exposes two pragmatic inference modes: deepseek-chat (optimized for standard turn-based chat, lower latency) and deepseek-reasoner (a “thinking” mode that prioritizes chain-of-thought and structured reasoning).

Limitations & risks

  • Benchmark maturity & reproducibility: many performance claims are early, community-driven, or selective. Independent, standardized evaluations are still catching up. (Risk: overclaiming).
  • Safety & hallucination: like all large LLMs, Deepseek V3.1 is subject to hallucination and harmful-content risks; stronger reasoning modes can sometimes produce confident but incorrect multi-step outputs. Users should apply safety layers and human review on critical outputs. (No vendor or independent source claims elimination of hallucination.)
  • Inference cost & latency: the reasoning mode trades latency for capability; for large-scale consumer inference this adds cost. Some commentators note that the market reaction to open, cheap, high-speed models can be volatile.

Common & compelling use cases

  • Long-document analysis & summarization: law, R\&D, literature reviews — leverage the 128k token window for end-to-end summaries.
  • Agent workflows and tool orchestration: automations that require multi-step tool calls (APIs, search, calculators). Deepseek V3.1’s post-training agent tuning is intended to improve reliability here.
  • Code generation & software assistance: early benchmark reports emphasize strong programming performance; suitable for pair-programming, code review, and generation tasks with human oversight.
  • Enterprise deployment where cost/latency choice matters: choose chat mode for cheap/faster conversational assistants and reasoner for offline or premium deep reasoning tasks.
  • How to access deepseek-v3.1 API

Step 1: Sign Up for API Key

Log in to cometapi.com. If you are not our user yet, please register first. Sign into your CometAPI console. Get the access credential API key of the interface. Click “Add Token” at the API token in the personal center, get the token key: sk-xxxxx and submit.

img

Step 2: Send Requests to deepseek-v3.1 API

Select the “deepseek-v3.1” endpoint to send the API request and set the request body. The request method and request body are obtained from our website API doc. Our website also provides Apifox test for your convenience. Replace <YOUR_API_KEY> with your actual CometAPI key from your account. base url is Chat format.

Insert your question or request into the content field—this is what the model will respond to . Process the API response to get the generated answer.

Step 3: Retrieve and Verify Results

Process the API response to get the generated answer. After processing, the API responds with the task status and output data.

Funktionen für DeepSeek-V3.1

Entdecken Sie die wichtigsten Funktionen von DeepSeek-V3.1, die darauf ausgelegt sind, Leistung und Benutzerfreundlichkeit zu verbessern. Erfahren Sie, wie diese Fähigkeiten Ihren Projekten zugutekommen und die Benutzererfahrung verbessern können.

Preise für DeepSeek-V3.1

Entdecken Sie wettbewerbsfähige Preise für DeepSeek-V3.1, die für verschiedene Budgets und Nutzungsanforderungen konzipiert sind. Unsere flexiblen Tarife stellen sicher, dass Sie nur für das bezahlen, was Sie nutzen, und erleichtern die Skalierung entsprechend Ihren wachsenden Anforderungen. Erfahren Sie, wie DeepSeek-V3.1 Ihre Projekte verbessern kann, während die Kosten überschaubar bleiben.
Comet-Preis (USD / M Tokens)Offizieller Preis (USD / M Tokens)
Eingabe:$0.44/M
Ausgabe:$1.32/M
Eingabe:$0.55/M
Ausgabe:$1.65/M

Beispielcode und API für DeepSeek-V3.1

Greifen Sie auf umfassende Beispielcodes und API-Ressourcen für DeepSeek-V3.1 zu, um Ihren Integrationsprozess zu optimieren. Unsere detaillierte Dokumentation bietet schrittweise Anleitungen und hilft Ihnen dabei, das volle Potenzial von DeepSeek-V3.1 in Ihren Projekten zu nutzen.
Python
JavaScript
Curl
from openai import OpenAI
import os

# Get your CometAPI key from https://api.cometapi.com/console/token, and paste it here
COMETAPI_KEY = os.environ.get("COMETAPI_KEY") or "<YOUR_COMETAPI_KEY>"
BASE_URL = "https://api.cometapi.com/v1"

client = OpenAI(base_url=BASE_URL, api_key=COMETAPI_KEY)

completion = client.chat.completions.create(
    model="deepseek-v3.1",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Hello!"},
    ],
)

print(completion.choices[0].message.content)

Versionen von DeepSeek-V3.1

Der Grund, warum DeepSeek-V3.1 mehrere Snapshots hat, kann potenzielle Faktoren wie Änderungen der Ausgabe nach Updates umfassen, die ältere Snapshots für Konsistenz erfordern, Entwicklern eine Übergangszeit für Anpassung und Migration bieten und verschiedene Snapshots, die globalen oder regionalen Endpunkten entsprechen, um das Benutzererlebnis zu optimieren. Für detaillierte Unterschiede zwischen den Versionen lesen Sie bitte die offizielle Dokumentation.

Weitere Modelle