Home/Models/Aliyun/Qwen Image
Q

Qwen Image

Setiap Permintaan:$0.028
Qwen-Image ialah model asas penjanaan imej yang revolusioner yang dikeluarkan oleh pasukan Tongyi Qianwen Alibaba pada tahun 2025. Dengan skala parameter sebanyak 20 bilion, ia berasaskan seni bina MMDiT (Multimodal Diffusion Transformer). Model ini telah mencapai kemajuan yang ketara dalam pemaparan teks kompleks dan penyuntingan imej yang tepat, menunjukkan prestasi yang luar biasa khususnya dalam pemaparan teks bahasa Cina. Diterjemahkan dengan DeepL.com (versi percuma)
Baru
Penggunaan komersial
Gambaran Keseluruhan
Ciri-ciri
Harga
API
Versi

Key features

  • Native / high-quality text rendering inside images — excels at producing legible, semantically-accurate text in generated images (posters, packaging, screenshots) — an area many earlier image models struggled with.
  • High-fidelity multimodal output — produces photorealistic and stylized images with good detail and language-aware layout.
  • Style transfer & detail enhancement — can apply consistent artistic styles or enhance local details while preserving scene coherence.

Technical details — how Qwen-Image works

Architecture and components (keywords: MMDiT, Qwen2.5-VL). The model uses an MMDiT-based diffusion transformer for image synthesis combined with a visual-language encoder (Qwen2.5-VL) to interpret prompts and visual context. This separation lets the model treat semantic guidance and pixel appearance differently, improving text fidelity and edit consistency. The official repository and technical report note a 20B-parameter backbone for the main T2I model.

Training pipeline (keywords: curriculum learning, data pipeline). To solve hard text rendering, Qwen-Image uses a progressive curriculum: it starts with simpler non-text images and gradually trains on more complex text-rich examples up to paragraph-level inputs. The team constructed a comprehensive pipeline that includes large-scale collection, careful filtering, synthetic augmentation and balancing to ensure the model sees many realistic text/photo compositions during training. This strategic curriculum is a key reason the model excels at multilingual text rendering.

Editing mechanism (keywords: dual-encoding, VAE + VL encoder). For editing, the system feeds the original image twice: once into the Qwen2.5-VL encoder for semantic control and once into a VAE encoder for reconstructive appearance information. The dual-encoding design enables the edit module to preserve identity and visual fidelity while allowing semantic modifications — for example, replacing an object or changing textual content without degrading unrelated regions.

Benchmark performance

Qwen-Image achieves SOTA or near-SOTA performance across multiple public benchmarks for both generation and editing, with particularly strong results in text rendering tasks and real-world composition benchmarks (e.g., T2I-CoreBench and curated image-editing suites).

Qwen-image API

How Qwen-Image compares to other leading models

Relative strengths: text rendering and bilingual text fidelity are the model’s distinctive advantages versus many generative competitors (e.g., DALL·E 3, SDXL, Midjourney), which are frequently stronger in purely artistic composition or stylistic diversity but weaker at dense multi-line or Chinese text layout. Multiple community comparisons and the model authors’ benchmark tables support this characterization.

Relative tradeoffs: compared to closed, heavily tuned commercial systems, Qwen-Image may require post-processing or prompt/adapter tuning to reach identical realism in some contexts (curved-surface warping, photorealistic compositing), per independent tests. For users prioritizing templated designs, packaging mockups, or bilingual text layouts, Qwen-Image tends to be preferable.


Typical and high-value use cases

  • Packaging & product mockups: accurate text and multi-line layouts for labels and packaging trials.
  • Advertising & design drafts: rapid prototyping where text fidelity matters (posters, banners).
  • Documentized image generation: generating images that must include readable content (menus, signs, interfaces).
  • Image editing pipelines: targeted edits (text replacement, object add/remove) preserving style and perspective.
  • How to access Qwen image API

Step 1: Sign Up for API Key

Log in to cometapi.com. If you are not our user yet, please register first. Sign into your CometAPI console. Get the access credential API key of the interface. Click “Add Token” at the API token in the personal center, get the token key: sk-xxxxx and submit.

Flux.2 Pro API

Step 2: Send Requests to Qwen image API

Select the “qwen-image ”endpoint to send the API request and set the request body. The request method and request body are obtained from our website API doc. Our website also provides Apifox test for your convenience. Replace <YOUR_API_KEY> with your actual CometAPI key from your account. base url is Images format(https://api.cometapi.com/v1/images/generations) via CometAPI.

Insert your question or request into the content field—this is what the model will respond to .

Step 3: Retrieve and Verify Results

Process the API response to get the generated answer. After processing, the API responds with the task status and output data.

Ciri-ciri untuk Qwen Image

Terokai ciri-ciri utama Qwen Image, yang direka untuk meningkatkan prestasi dan kebolehgunaan. Temui bagaimana keupayaan ini boleh memberi manfaat kepada projek anda dan meningkatkan pengalaman pengguna.

Harga untuk Qwen Image

Terokai harga yang kompetitif untuk Qwen Image, direka bentuk untuk memenuhi pelbagai bajet dan keperluan penggunaan. Pelan fleksibel kami memastikan anda hanya membayar untuk apa yang anda gunakan, menjadikannya mudah untuk meningkatkan skala apabila keperluan anda berkembang. Temui bagaimana Qwen Image boleh meningkatkan projek anda sambil mengekalkan kos yang terurus.
Harga Comet (USD / M Tokens)Harga Rasmi (USD / M Tokens)Diskaun
Setiap Permintaan:$0.028
Setiap Permintaan:$0.035
-20%

Kod contoh dan API untuk Qwen Image

Qwen-Image is an image-generation and image-editing foundation model in the Qwen family designed for high-fidelity text rendering, precise editing, and general text-to-image generation. It is designed to perform text-aware generation, bilingual text rendering (notably strong in Chinese and English), and fine-grained in-context editing. The release emphasizes a combined understand + generate design philosophy (image understanding tasks and generative tasks trained in a unified pipeline).

Versi Qwen Image

Sebab Qwen Image mempunyai berbilang snapshot mungkin merangkumi faktor berpotensi seperti variasi output selepas kemas kini yang memerlukan snapshot lama untuk konsistensi, menyediakan tempoh peralihan untuk penyesuaian dan migrasi kepada pembangun, serta snapshot berbeza yang sepadan dengan endpoint global atau serantau untuk mengoptimumkan pengalaman pengguna. Untuk perbezaan terperinci antara versi, sila rujuk dokumentasi rasmi.
version
qwen-image
qwen-image-edit

Lebih Banyak Model