Home/Models/Aliyun/Qwen Image
Q

Qwen Image

Per Verzoek:$0.028
Qwen-Image is een revolutionair basismodel voor beeldgeneratie, uitgebracht door het Tongyi Qianwen-team van Alibaba in 2025. Met 20 miljard parameters is het gebaseerd op de MMDiT (Multimodal Diffusion Transformer)-architectuur. Het model heeft aanzienlijke doorbraken bereikt in complexe tekstrendering en nauwkeurige beeldbewerking, en demonstreert uitzonderlijke prestaties, vooral in Chinese tekstrendering. Vertaald met DeepL.com (gratis versie)
Nieuw
Commercieel gebruik
Overzicht
Functies
Prijzen
API
Versies

Key features

  • Native / high-quality text rendering inside images — excels at producing legible, semantically-accurate text in generated images (posters, packaging, screenshots) — an area many earlier image models struggled with.
  • High-fidelity multimodal output — produces photorealistic and stylized images with good detail and language-aware layout.
  • Style transfer & detail enhancement — can apply consistent artistic styles or enhance local details while preserving scene coherence.

Technical details — how Qwen-Image works

Architecture and components (keywords: MMDiT, Qwen2.5-VL). The model uses an MMDiT-based diffusion transformer for image synthesis combined with a visual-language encoder (Qwen2.5-VL) to interpret prompts and visual context. This separation lets the model treat semantic guidance and pixel appearance differently, improving text fidelity and edit consistency. The official repository and technical report note a 20B-parameter backbone for the main T2I model.

Training pipeline (keywords: curriculum learning, data pipeline). To solve hard text rendering, Qwen-Image uses a progressive curriculum: it starts with simpler non-text images and gradually trains on more complex text-rich examples up to paragraph-level inputs. The team constructed a comprehensive pipeline that includes large-scale collection, careful filtering, synthetic augmentation and balancing to ensure the model sees many realistic text/photo compositions during training. This strategic curriculum is a key reason the model excels at multilingual text rendering.

Editing mechanism (keywords: dual-encoding, VAE + VL encoder). For editing, the system feeds the original image twice: once into the Qwen2.5-VL encoder for semantic control and once into a VAE encoder for reconstructive appearance information. The dual-encoding design enables the edit module to preserve identity and visual fidelity while allowing semantic modifications — for example, replacing an object or changing textual content without degrading unrelated regions.

Benchmark performance

Qwen-Image achieves SOTA or near-SOTA performance across multiple public benchmarks for both generation and editing, with particularly strong results in text rendering tasks and real-world composition benchmarks (e.g., T2I-CoreBench and curated image-editing suites).

Qwen-image API

How Qwen-Image compares to other leading models

Relative strengths: text rendering and bilingual text fidelity are the model’s distinctive advantages versus many generative competitors (e.g., DALL·E 3, SDXL, Midjourney), which are frequently stronger in purely artistic composition or stylistic diversity but weaker at dense multi-line or Chinese text layout. Multiple community comparisons and the model authors’ benchmark tables support this characterization.

Relative tradeoffs: compared to closed, heavily tuned commercial systems, Qwen-Image may require post-processing or prompt/adapter tuning to reach identical realism in some contexts (curved-surface warping, photorealistic compositing), per independent tests. For users prioritizing templated designs, packaging mockups, or bilingual text layouts, Qwen-Image tends to be preferable.


Typical and high-value use cases

  • Packaging & product mockups: accurate text and multi-line layouts for labels and packaging trials.
  • Advertising & design drafts: rapid prototyping where text fidelity matters (posters, banners).
  • Documentized image generation: generating images that must include readable content (menus, signs, interfaces).
  • Image editing pipelines: targeted edits (text replacement, object add/remove) preserving style and perspective.
  • How to access Qwen image API

Step 1: Sign Up for API Key

Log in to cometapi.com. If you are not our user yet, please register first. Sign into your CometAPI console. Get the access credential API key of the interface. Click “Add Token” at the API token in the personal center, get the token key: sk-xxxxx and submit.

Flux.2 Pro API

Step 2: Send Requests to Qwen image API

Select the “qwen-image ”endpoint to send the API request and set the request body. The request method and request body are obtained from our website API doc. Our website also provides Apifox test for your convenience. Replace <YOUR_API_KEY> with your actual CometAPI key from your account. base url is Images format(https://api.cometapi.com/v1/images/generations) via CometAPI.

Insert your question or request into the content field—this is what the model will respond to .

Step 3: Retrieve and Verify Results

Process the API response to get the generated answer. After processing, the API responds with the task status and output data.

Functies voor Qwen Image

<think> 用户要求我将英文文本翻译成荷兰语(Nederlands)。我需要注意: 1. 保持格式和特殊字符(如{} 变量占位符) 2. 技术术语保持准确性 3. 保持语气和风格 4. UI文本要简洁明了 5. 只返回翻译文本,不要添加解释 6. 不要添加任何前缀或说明 原文是: "Explore the key features of Qwen Image, designed to enhance performance and usability. Discover how these capabilities can benefit your projects and improve user experience." 这看起来是产品或技术介绍的文本,需要翻译成荷兰语。我需要保持Qwen Image这个占位符不变。 让我翻译: - Explore = Ontdek/Verken - key features = belangrijkste functies/eigenschappen - designed to enhance = ontworpen om te verbeteren - performance = prestaties - usability = bruikbaarheid - Discover = Ontdek - capabilities = mogelijkheden - benefit = ten goede komen/voordeel opleveren - projects = projecten - improve = verbeteren - user experience = gebruikerservaring 翻译: Ontdek de belangrijkste functies van Qwen Image, ontworpen om prestaties en bruikbaarheid te verbeteren. Ontdek hoe deze mogelijkheden uw projecten ten goede kunnen komen en de gebruikerservaring kunnen verbeteren. 不过"Ontdek"出现了两次,可能需要调整一下: Verken de belangrijkste functies van Qwen Image, ontworpen om prestaties en bruikbaarheid te verbeteren. Ontdek hoe deze mogelijkheden uw projecten ten goede kunnen komen en de gebruikerservaring kunnen verbeteren. I'll explore how these capabilities can positively impact your projects and optimize the user experience. </think> Verken de belangrijkste functies van Qwen Image, ontworpen om prestaties en bruikbaarheid te verbeteren. Ontdek hoe deze mogelijkheden uw projecten ten goede kunnen komen en de gebruikerservaring verbeteren.

Prijzen voor Qwen Image

Ontdek concurrerende prijzen voor Qwen Image, ontworpen om te passen bij verschillende budgetten en gebruiksbehoeften. Onze flexibele abonnementen zorgen ervoor dat u alleen betaalt voor wat u gebruikt, waardoor het gemakkelijk is om op te schalen naarmate uw vereisten groeien. Ontdek hoe Qwen Image uw projecten kan verbeteren terwijl de kosten beheersbaar blijven.
Comet Prijs (USD / M Tokens)Officiële Prijs (USD / M Tokens)Korting
Per Verzoek:$0.028
Per Verzoek:$0.035
-20%

Voorbeeldcode en API voor Qwen Image

Qwen-Image is an image-generation and image-editing foundation model in the Qwen family designed for high-fidelity text rendering, precise editing, and general text-to-image generation. It is designed to perform text-aware generation, bilingual text rendering (notably strong in Chinese and English), and fine-grained in-context editing. The release emphasizes a combined understand + generate design philosophy (image understanding tasks and generative tasks trained in a unified pipeline).

Versies van Qwen Image

De reden waarom Qwen Image meerdere snapshots heeft, kan mogelijke factoren omvatten zoals variaties in de uitvoer na updates die oudere snapshots vereisen voor consistentie, het bieden van een overgangsperiode voor ontwikkelaars om zich aan te passen en te migreren, en verschillende snapshots die overeenkomen met wereldwijde of regionale eindpunten om de gebruikerservaring te optimaliseren. Voor gedetailleerde verschillen tussen versies, raadpleeg de officiële documentatie.
version
qwen-image-edit
qwen-image

Meer modellen